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A composition law for solutions of Weisskopf- Wigner 
theories 

V Ernst 
Sektion Physik der Universitat Munchen, Theoretische Physik, 8000 Miinchen 2, 
Theresienstr. 37 Deutschland 

Received I 2  June 1974, in final form 19 August 1974 

Abstract. We treat the interaction of incident photons with an atom in a Weisskopf-Wigner 
theory on an arbitrarily large Hilbert space defined by some arbitrarily weak important-state 
hypothesis. It is shown rigorously that the solution describing the interaction of arbitrarily 
many incident photons in an arbitrary initial state of coherence or incoherence with an atom 
in any initial state can be ‘composed’ of simpler elements, namely: amplitudes of one free 
photon, amplitudes of spontaneously emitted photons, and amplitudes ofphotons emitted in a 
resonance fluorescence process after the absorption of one, two,. . . incident photons. The 
composition law is applied to some problems in the interaction of a single atom with a 
coherent beam of incident photons. 

1. Introduction 

Grimm and Ernst (1974, to be referred to as GE) have recently systematized an approxi- 
mation idea of Weisskopf and Wigner (1930) (see also Dirac 1927a, Weisskopf 1931, 
Kalltn 1958, Ernst and Stehle 1968, and others) to a well structured hierarchy of 
‘Weisskopf-Wigner (WW) approximations’ or ‘WW theories’ for treating the interaction 
of photons with an atom. Whereas G E  mainly analysed the existence of WW theories we 
look here at the practical computation of solutions. We show that, and how, the most 
general solution describing the interaction of a bound electron with incident photons 
can be ‘composed’ ofthe simpler amplitudes noted in the abstract. These constituents are 
either known or defined as special solutions of the given WW theory or of simpler WW 
theories involving fewer, in cases of practical interest frequently very much fewer, 
photons. Their physical content, in addition, is quite obvious in many cases. We show 
that they exist at least in all those cases where the considered WW theory exists with 
certainty. 

Our composition law, formally a ‘symmetrization procedure’, lays open the structure 
of the desired solution. In problems involving many photons (optical coherence, for 
example) this is frequently more important than the detailed knowledge of the con- 
stituents. It can be applied directly to many photons in any pure state impinging upon 
one atom, but generalizations to cases with many atoms and/or incomplete knowledge 
of the initial state appear straightforward. Specializations, eg to a fully coherent initial 
state, are simple applications. The most striking feature of the composition law is its 
existence at all, and that even in any order of the systematic WW approximation scheme 
of GE. The possibility of composing any solution of practically any WW theory of 
constituents obtained from WW theories involving fewer photons demonstrates quite 
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obviously that the GE hierarchy of WW approximations follows 'natural lines' of the 
exact theory. It thus exposes exact structures in the atom-photon interaction. 

In view of the complexity of the composition law we concentrate our attention on 
its proper formulation and proof. The law seems to be without direct precedents in 
the literature ; in particular, we find no comparable ideas in previous WW theories with 
incident photons (Weisskopf 1931, Bergmann 1967). Some of the ideas in the proof go 
back to the work of Ernst and Stehle (1968). To illustrate its potential and its working 
mechanism we apply it to some simple problems in the interaction of an atom with a 
coherent beam of incident photons. 

An outline of the GE concept is given in 0 2. In 0 3 we formulate the composition law. 
The existence and structure of the constituents needed are analysed in 9 4. The proof is 
completed in 0 5 .  Sections 6-8 contain the applications mentioned. 

2. A review of the systematic Weisskopf-Wigner approximation idea 

We introduce the notation and background material by giving an outline of the WW 
approximation scheme of GE. 

As in GE we consider a slightly modified one-electron Dirac atom A with a discrete 
energy spectrum E" and eigenstates u,(x), the index a comprising all necessary atomic 
quantum numbers. By the transverse part eA . J of the usual minimal coupling density 
eApJp  the atom A interacts with the 'radiation field' R of transverse photons. To control 
the infrared behaviour we equip them with a formal mass p 2 0. GE define a WW 
approximation of this problem as a Schrbdinger theory on the Hilbert space 

w4 = @ x; (1) 
(a .n )d  

where 0 denotes the 'orthogonal sum' and 2; is the Hilbert space of all states of the 
coupled system A + R with the property ' A  in the state u,(x) and R in some state with 
n 2 0 photons'. Let X : = R3 x { 1,2} denote the momentum and polarization space of 
a photon with elements K :  = (k, A) comprising wavevector k and polarization index A. 
A?; then is the subspace of, in K ~ ,  . . . , K",  symmetric elements a:: = O P , ( K ~ ,  , . . , K,) of 
L 2 ( X x " ) , w i t h X X " :  = X x  ... x X ( n t i m e s ) a n d L 2 ( X x n ) :  = @ f o r n = O .  Zissome 
finite or infinite set of index pairs (a, n) which is determined by some 'important state 
hypothesis' and defines the 'order' of the resulting WW approximation. With 
O(K)  = 4 k ) :  = (k2 + p 2 ) l i 2 ( h  = c = 1) and M(a ,  b ;  K )  defined below, in terms of the 
'(a, n) components' a(t):(K1,. . . , K,) of a vector Ia,(t)) E %'(I) the Schrodinger theory on 
X(1) reads 

d 
i-a(tE(K1,. . . , K,) 
dt 

= ( w ( K ~ ) +  . . . + W ( K , ) + E " ) ~ ~ ( ~ ) : ( K ~ ,  . . . , K , )  

+ 1 ( n + 1 ) 1 ' 2  d3~M*(a ,  b ;  K ) a ( t ) t + l ( ~ ,  K ~ , .  . . , K,) 
( b , n +  1 ) d  J 

1 "  1 n1/2 1 M(b ,a ;  K p b ( l ) ; - i ( K i , .  s . ,  K,,-lr K p + l , .  + .  , k,). (2) 
( b , n - l ) E I  p = l  

I d 3 ~ .  . . denotes integration over k and summation over 1. Equation (2) holds simul- 
taneously for all elements (a, n )  of I and the sums on the right-hand side extend over all 
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pairs (b, n+ 1) which, together with the element (a, n) given on the left-hand side, belong 
to I .  The initial conditions are 

a ( O ) $ K l ,  * . . , K , )  = X : ( K 1 ,  * . * 9 K , )  (3) 

with X: denoting the (a, n) components of any vector Ixr) E X’(1). 

elements’ 
The existence of a WW theory on X(I) of course depends on the ‘atomic transition 

1 d3x ei%~(x)au,,(x). 
[ 2 0 (  K )  ( 2Z)3] 

M*(a, b ;  K )  := (4) 

J d3x .  . . denotes the usual integration over R3, e is the coupling constant, a the usual 
Dirac vector, and C ( K )  the usual unit transverse polarization vector. GE showed that 
M(a,  b, K )  is an element of L2(X) for any two bound states u,(x), U&) of the ordinary 
Dirac hydrogen atom. They showed further that the right-hand side of (2) defines on 
X(1) a self-adjoint Hamilton operator HI if 

M(a, b ; K )  E L 2 ( X )  for any occurring a, b ( 5 )  

c1 2 0, I finite ( 6 4  

cc > 0, I = {Q x No). (4b)  

and if, in addition, either 

or 

Q denotes any finite set of atomic indices a and No : = (0, 1,2, . . .}. The rigorous self- 
adjointness of H, on %(I)  guarantees the existence of a unique, unitary time evolution 
operator U,(t) on &(I)  for all cases (6). Condition (5) is vital for this existence and will be 
assumed to hold throughout this work. 

If I, c I c . , . is any sequence of index sets which tends to the set I, of all possible 
pairs ( a , n )  one hopes that the sequence of WW approximations on the sequence of 
Hilbert spaces %(I,) c % ( I , )  c . . , ‘tending’ to the exact state space 9’ of A + R in some 
sense might converge against some ‘exact’ theory on Y Not much is known about this 
convergence, however. Kallen’s (1958) version of the original theory of Weisskopf and 
Wigner (1930) is the simplest example of a WW theory with a two-element set I obeying 
( 6 4 .  The success of such simple WW theories (proper linewidths in the original theory of 
Weisskopf and Wigner (1930), expected linewidths and directivity effects in Weisskopf s 
(1931) theory of one-photon resonance fluorescence, directivity (Ernst and Stehle 1968) 
and coherence (Ernst 1969) in modern super-radiance problems) encourages work on 
more elaborate WW theories, like that to be presented now. 

3. The composition law 

We consider now the WW theory on an arbitrary &’(I) and formulate the composition 
law, 

Let b , ( ~ ) ,  b 2 ( ~ ) ,  . . . be the elements of a complete, orthonormal base in L 2 ( X ) .  For 
convenience we restrict its choice by the requirement that all b i ( ~ )  shall be in the inter- 
section of the domains of the multiplication operators O(K) and (4~))’ so that the integrals 

gsc(t) := d3rcM*(a, c ;  K ) ~ ~ ( K )  e-ia(K)t 
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because of ( 5 )  define uniformly bounded, continuously differentiable functions of t .  
Such bases exist ; for given A the b,(k, I.) could be the Fourier transforms of the eigenfunc- 
tions of the harmonic oscillator in three dimensions, for example. 

Further, let i ,  , . . . , in be any choice of natural numbers and let [il , . . . , in] be the class 
of those choices i,, . . . , in  which can be obtained from each other by a permutation of the 
elements. To any class [i,, . . . , in] we define its 'permutability' 

n !  
n,!n,! . . . p [ i , ,  . . . , in] = 

where n, is the number of times the natural number s occurs among the numbers i of 
any choice i ,  , . . . , in. To any class we associate an element 

c ~ [ i l 9  . . * 9 i , ] " , ~ l ,  . . . K,) 
1 i 1 ,  ..., in  

n ! j ,  , . . . , j ,  
= ( p [ i , , .  . . , p b j , ( K i )  . . . b j , ( K n )  

of 2: where 
Y l  ..... Y" 

P f (x1,  .. ,, X n ) : = f ( y l , .  * .  3 ~ n ) + f ( y , ,  Y ,  Y , ,  . * .  9 Y,)+ . . . (10) 
X I , .  . . ,Xn  

denotes the sum of the n !  terms obtained by inserting into f ( x l , .  . . , x,) all n! formal 
permutations of the elements y1 , . . . , y, . This 'permutation sum' (Ernst and Stehle 1968) 
is a symmetric function of y ,  , . . . , y ,  which reduces to a factor n ! iff is symmetric already. 
Further, for n = 0, let the above quantities be defined as p[&]  = 1, rp; = 1 (EC), and the 
permutation sum as a factor 1 . cp; or, for n > 0, the set of all vectors (9), are a complete, 
orthonormal base in X:.  Therefore, any initial component x : ( K , , .  . . , K,) E X:  can be 
expanded in the form 

with the multiple sum 
m m 

. . .  := 2 . . .  2 . . .  

in the case n = 0 defined as factor 1. The factor p -  in (1 1) takes care of the fact that the 
sum (12) counts each element of the class [ i l  , . . . , in]  precisely once and thus overcounts 
the class by a factor p [ i , ,  . . . , i n ] .  The factor p"' in (11) compensates a factor p -  l i 2  

which has been defined into the expansion coefficient x: for convenience. The simplicity 
so obtained has deep lying reasons which need not be discussed here. Inserting (9) into 
(1 1) we get 
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Here we have exploited the fact that under the sum (12) the first permutation sum in (9) 
yields merely a factor n! .  The x;(i,,. . . , in )  are explicitly given by 

x;(i,,. . . , in) = I d 3 ~ ,  . . . d3~,bi*,(rcl). . . bz(rcn)x:(lcl,. . . , K , )  (14) 

(x: = x;) and satisfy the normalization condition 

In the case n = 0 the multiple sum and multiple integral shall be understood as a factor 
1 so that the terms lx:l2 = Ix$12 are included properly. 

After these necessary preparations we are ready to formulate the composition law. 
Part A .  For the WW theory defined by equations (2) on any &'(I) the expression 

d t X ( K 1 ,  . . ., K n )  

exists for any (a, n)  E I and is the (a, n)  component of the vector Uf(t)lXf) which in ac- 
cordance with equations (2) evolves in time from the arbitrary initial vector Ixr)  E &'(I) 
with components C(K,,. . . , K , ) ,  provided the following three conditions are satisfied. 

(i) Equations (2) define on &'(I) for any t < CO a unique and unitary time evolution 
operator U,@). 

(ii) Let (a, n), (b, m) be any, not necessarily different elements of I ,  let v, cr be integers 
of the sets v E (0, . . . , n}  and E (0, . . . , m},  and finally to any given cr 2 1 let ( j ,  , . . . ,j,) 
be any set of cr natural numbers. To any choice (a, n), (b, m), v, U, j ,  , . . . , j ,  there exists a 
function P($";  j , ,  . . . , j,; t ) ; ( K , , .  . . , K ~ )  ( ~ 0  for cr < 0) of t and of I C , , .  . . , K, which for 
v 2 1 is symmetric in K ~ ,  . . . , K ,  and defined on X x v .  Together with the functions 
corresponding to other choices (a', n'), (b', m'), v', cr', j', , . . . , j b  it satisfies the equations of 
motion 
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under initial conditions 

(iii) The sums over (b, m) E I and i, , . . . , i, in (16) converge so that the operator H, 
defined by (2) may be applied under these sums. 

Part E .  Conditions (i), (ii) and (iii) of part A are satisfied at least for all WW theories 
satisfying conditions ( 5 )  and (6). 

We have no intention here to extend the existence conditions for WW theories and so 
condition (i) has been chosen partly for convenience. Condition (iii) is extremely weak 
and of technical relevance only, if at all. For Ix,) from the domain of H I  the equation (16) 
of course yields the solution of (2). Since U,(t)  is unique, also the closed expression (16) 
is unique though its single constituents, the b i ( ~ )  and the fl functions, of course depend 
on the choice of the base (9). Part A is formulated so that a formal composition can be 
made in any WW theory. Part B puts all this on a rigorous base where such a base exists 
with certainty. 

It is important to note that in (16) the sums over (b,  m) and i, , . . . , i, in essence cover 
only the contributions of the vectors of a complete base in &‘(I) so that these sums are a 
trivial consequence of the quantum-mechanical superposition principle. The point of 
the theorem is the ‘composition’ ofeach of these contributions. We see that the contribu- 
tion of the m-photon component of any initial state to the solution never contains more 
than m ‘free-photon factors’ bi(rc) the incident photons are replaced, step by step, 
by f l  functions. This is the decisive point and the key to the physical interpretation. 
The composition law becomes considerably simpler in certain special cases, for example, 
if the initial state is fully coherent. We look at this in 0 6. 

4. Structure and existence of the constituents 

We prepare the proof of the composition law with an investigation of the constituents 
defined by (17) and (18). 

Looking at (17) we first note a recursion with respect to c: if the @(;: . . .) are given, 
the last term in (17) is known and we have to solve an inhomogeneous linear system of 
equations for the /3(;, . . .). We call the set G ,  of all /3’s with the same ~7 a ‘generation’. The 
‘founder generation’ Go owes its existence to the non-vanishing initial values (18), all 
‘daughter generations’ G,, cr 2 1, have vanishing initial values and thus depend on the 
existence of preceding ‘parent generations’ Go- which, by the last term of (18), become 
their source. 

Considering equations (17) for some fixed value of c we see further that, with the last 
term given, only f l ( ; ,  . . .)’s with constant difference t between n and v (t = n - v )  are 
connected by the equations of motion. We call the set G; E G ,  of all elements fl(;. . . .) 
corresponding to the same value o f t  a ‘family’ so that each generation G ,  is the union 
of its families G:. We note that each f l  occurring in (16) belongs to precisely one family 
G1, and that only the families with t 2 0 occur in the theory. 

We first look at Go and write down the equations of motion for some founder family 
G‘, . With n = v + T we obtain for 
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the equations 

= ( O ( K 1 ) +  . . . +O(Kv)+E’)/?(b;r+;; t)(lV(Kl,. . . , K v )  

+ ( V + l ) ” 2  1 ~ d 3 K ~ * ( ~ , C ; K ) ~ ( b ” i v i ~ ; t ) ~ + ~ ( K , K ~ , . .  . , K v )  
( C , ‘ +  v +  1 )€I  

b ; r + v -  1 . 1 
+p 1 C M ( c , a ; K , ) B (  0,t)‘Y-l 

( c , r + v - l ) € I  p = 1  

X (IC1 7 . .  ., Kp- 1 ,  K , +  1 , .  . . ,  K v )  (19) 

(20) 

In these equations b and T are fixed parameters and (a, v), (c, v & 1) are restricted by the 
condition that (a, 7 + v), (c, T + v f 1) are elements of I .  They are therefore elements of the 
set 

which obviously never contains more elements than I .  It is suggestive to consider (19) as 
an equation on the Hilbert space &‘(Ir), For comparison, let us consider the WW theory 
(2) on this Hilbert space : equations (2) have to be written down for any (a, v) with the 
properties v 2 0 and (a, 7 + v )  E I ,  as also requested for (19). Further, on the right-hand 
side of (2) we have to sum over all elements (c, v f 1) E I‘, ie for given (a, v) with v 2 0 and 
(a, r+  v) E I over all elements (c, v f  1) with v f  1 2 0 and (c, T +  v f  1) E I .  But these are 
precisely the summation requirements of (19). Finally, the same M(a,  c ;  K) as in (19) 
occur in the WW theory on &‘(Ir). It follows that equations (19) are identical with the 
WW theory on &‘(I7). Since to an element (a, n)  of I ‘corresponds’ an element (a, n - z) 
of IT, the theory on &‘(Ir) is obtained by ‘shifting the given theory on &‘(I) to fewer 
photons’. The members of a family G’, thus are the components of a solution vector 
la,.(t)) ofa WW theory offewer photons. If I is finite, all I’are also finite. Since the theory 
on &‘(Ir) involves no M(a,  c ;  IC) other than the theory on &’(I), it exists whenever this 
theory exists. So for (6a) as in GE we get a unique, norm-conserving solution of (19), 
(20). In the case (6b) we obviously have I‘ = I for any 7 so that all families obey the same 
equations of motion. The upper index n of the fl functions is superfluous here and can be 
omitted. All members exist and are unique, as in GE. Since the initial states in both 
cases are from the domain of HI. we had the right to speak of ‘solutions’ directly. 

These solutions are continuously differentiable with respect to t .  For the above 
reason the right-hand side of (19), now considered with the given special solution 
p(d“ . . .) inserted, exists, and with it the left-hand side, ie the time derivatives of the ps. 
But if the inserted j’s are differentiable, the right-hand side of (19) is continuous in 
practically any case of interest, and then also the time derivatives of the f i ’ s  are continu- 

We note finally that because of (20) only those founder families have non-vanishing 
members whose I’ contains the element (b,O). For proper z such families exist. The 
families Gr contribute for m < n the terms p = m of (16). Since (b, m) is from I ,  (b, 0) 
is in I” and so the Gr have non-trivial elements. This guarantees that (16) can assume the 
required initial values. 

with initial conditions 

O ) t ( K 1  7 . . . 9 K v )  = 8 0 , b S v , 0  for any T .  p ( b ; 7 + ; ;  

IT:= {(a,v):v 2 o , ( a , z + v ) E I ) ,  T = 0,1,2, . . .  (21) 

ous. 
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We now proceed to the first daughter generation G and pick out some family G; . Its 
equations of motion are 

with initial conditions 

p(b;r+;  ; jl ; O K ( K 1 , .  . . , K , )  = 0 

q ; ( t m l ,  * . ‘ 9 K , )  : = 1 gg;’(t)B( 

for all a, v, T. (23) 

The last term of (22) is 

(24) b ; r + l + v  
0 ; t ) t (K l ,  . 9 * , Kv). 

( c , r + v + l ) d  

The summation conventions are the same as in (19) so that (22) can be looked upon as an 
inhomogeneous linear equation on .M(Z‘), 

(25) 
d 

i;i;Ibr=(t)> = Hr=IBr4t)> + ld(t)), 18r40)) = 0, 

provided that q;(t); ,  as given in (24), can be interpreted as the (a, v) component of a 
vector Iq;(t))  of .M(Ir). We show this, and that Iq;(t)) is continuously differentiable at 
least in all cases (6) :  qi ( t )Lly(K1, .  . . , K , )  is composed of the continuously differentiable 
elements of G‘,’ and of the continuously differentiable functions &*‘(t). Since the former 
are square integrable on X ’, and since in both cases (6 )  the sum in (24) covers only 
a finite number of terms, the right-hand side of (24) certainly is again an element of X 
which is continuously differentiable with respect to t. If I and thus also I‘ are finite this is 
sufficient to make 1q;(t)) a continuously differentiable element of #(Ir). In the case (6b) 
we must show in addition that 11 Iq;(t))II is finite. In that case we have 
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The last square is due to the fact that the sum over c' yields the same as the written sum 
over c. But now the integrations and the sum over v act only on the second term and 
yield the square C2 of the norm C of a norm-conserving vector of &'(I). So we get 

and in the case (6b)  this is finite. 
Thus equation (25) is proved to  be a well defined inhomogeneous, linear differential 

equation on &'(Ir) with, at  least in all cases (6), a self-adjoint generator H , ,  . Therefore, 
under the initial condition (25) it has a unique solution (Kato 1966, p 486) which again is 
continuously differentiable in t. 

By induction with respect to 0 we find similarly that the elements of each generation 
G, exist and are continuously differentiable in t .  Note that family G; is the 'descendent' of 
family Gh"'. 

In the practically most important case of a finite I there exists a noteworthy 'progress 
from generation to generation'. With increasing 7 the spaces * ( I T )  contain states of 
fewer and fewer photons and finally become empty. The amplitudes of the last non- 
trivial founder family therefore describe the smallest number of photons and thus are the 
simplest to handle. The amplitudes in the first descendent G:-' describe one photon 
more than those of the parent family G', and thus are less simple ; in general, the WW 
theory determining them also is of higher order in the sense of the GE hierarchy. The 
descendents of a given founder family thus become loaded with more and more photons 
and are thus less and less simple. But as soon as the descendents GY of a G', have 
'achieved' the Hilbert space &'(I) and Hamiltonian H ,  of the full (considered) WW 
theory, they remain without descendents and thus 'die out'. It is interesting that the 
considered theory is composed of elements of theories on Hilbert spaces &'(Ir) which 
even can be orthogonal to %(I ) ,  namely if I n I' = 4. This can occur, eg in the example 
I = ( A ,  N ) ,  (B,  N + 1) of a two-element set I .  

We have discussed the equations (17), (1 8) of condition (ii) only as far as needed for the 
proof of the composition law. The actual solution requires more work. We know from a 
number of rather representative WW theories that these solutions also can be 'composed' 
of known elements, namely the M(a,  b ; K), and of functions of t  which depend only on the 
'radial variables' Ikli,. . . , /k,l in the spaces .X ", and are governed by corresponding 
'radial equations'. We expect quite generally a sort of separation of the angle and 
polarization variables in X "for any solution of( 17). This certainly will ease the physical 
interpretation which therefore has been postponed. We note only that all results on the 
directions of photons described by solutions of (17) depend solely on the atomic transition 
elements M(a,  b ;  IC) and thus are independent of the directions of incident photons. For 
the constituents in Go this is clear because all elements of Go are amplitudes of spontane- 
ously emitted photons. The constituents in later generations depend on the incident 
photons only through the scalar functions ggSb( t )  which are quite insensitive to the latter's 
directions. For 0 2 1 the elements of G, are amplitudes of photons emitted in resonance 
fluorescence processes after the absorption of 0 photons and thus equipped with practi- 
cally the same directivity characteristics as the spontaneous amplitudes of Go.  It is 
characteristic that there are no constituents which could be associated with 'stimulated' 
emission processes. Stimulated emission is a consequence of the process of composition, 
as we shall see. 

We note finally that in a possible 'exact' theory the condition (i) was sufficient for the 
existence of all constituents which in that case simply were special solutions. 
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5. The proof of the composition law 

The proof of our theorem is merely a technical verification but because of its complexity 
and the insight into the structure of WW theories it may provide it should not be omitted. 
It also reflects traces of the ideas and the labour needed to find the theorem at all. 

We begin with part A and thus assume conditions (i), (ii) and (iii) to be satisfied. 
We show first that the initial conditions (3) are satisfied by (16). The factor 6,,060,0 in 

(18) means that only the terms p = m = n in (16) contribute to (16) at  t = 0. The factor 
in (18) therefore further reduces the sum over (b, m) E I to the one term (b, m) = (a, n). 

Thus (16) is reduced to the expression on the right-hand side of (13) if we again use the 
fact that the permutation sum yields, in this case, only a factor n ! because it appears under 
the sum (12). The left-hand side of (1 3) equals the required initial value. 

Since for t < CO a unique, unitary time evolution operator U,(t) exists by condition 
(i), the states Iu,(t))  evolving from the vectors of any base of &‘(I) again are a ‘rotated’ 
base of &‘(I). Therefore the state lar(t)) evolving from any initial Ixr)  at any time 
t e cc can be expanded with respect to this rotated base with time-independent ex- 
pansion coefficients. These coefficients in essence equal our x:(il,. . . , in)  because by an 
identical reformulation of (1 6), consisting of an additional, formal symmetrization 
process with respect to i, , . . . , i, under the sum over i, , . . . , i, we could achieve that (16) 
assumes precisely the form of an expansion with respect to the mentioned rotated base. 
Therefore it is sufficient to prove the theorem for any base vector of % ( I )  as initial state ; 
the convergence of the sum over (b, m) E I and over i ,  , . . . , i, is then assured automatically. 
If we take as a base of X(I )  the sum of the bases in X i  chosen in Q 3 it certainly lies 
in the dense set 9 of vectors Ixl) E &‘(I) with only a finite number of non-vanishing 
expansion coefficients x;(i,, . . . , in) when (a,  n )  varies over the whole domain I .  9 is also 
contained in the domain of the Hamilton operator H,. Therefore it is sufficient to show 
that expressions (16) solve the equations (2) for any finite set of non-vanishing expansion 
coefficients x,?(il, . . . , in) .  

But then all sums in (16) are finite and i(d/dt)u(t);(K,,. . . , K , )  is obtained by term-by- 
term differentiation. We get 

d 
dt i- u(t);(K1, . . . , K n )  = Lo + L 1 + L ,  + L ,  + L ,  (29) 

with Lo denoting the terms from the differentiation of the exponentials in (16) and 
L ,  . . . L,  defined as the contribution of the first . .  . fourth term of the right-hand side of 
(17) when the t derivatives of the /3’s are replaced by (17), in accordance with condition (ii). 
Further, let R ,  , R , ,  R ,  denote the terms obtained from the first, second, third term of the 
right-hand side of (2) if (16) is inserted and the operator HI is applied under these sums, 
according to condition (iii). We then have to verify the equation 

(30) L o + L ,  + L,+  L3 + L4 = RI + R 2 +  R , .  

We do this by separately verifying the equations L o +  L ,  = R , ,  L ,  = R 3 ,  and 
L 2 + L 4  = R , .  

We first prove Lo+L,  = R ,  . Let S o ,  S ,  denote the summation operators 
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so that 

with the same ,B.. . as in (33). Adding these terms and taking into account that the 
resulting sum 0(ql)+ . . . +o(qn) is the same for any permutation q l ,  . . . , q, of rcl, . . . , K ,  

we can take the factor (O(K~)+ . . . +w(K,)+ E") out of the permutation sum and out of 
SOSl. But then 

Lo + L ,  = (w(K,)+ . . . +o(K,) + E")a(t):(K1, . . . , K,) = : R ,  , (36) 

as stated. 
Next we show : L3 = R,. We have, with the above symbols, 

1 n - o  

We note that each term of the sum over p, since occurring under the permutation sum, 
yields the same as the term p = n - p. The resulting factor n - p together with the factor 
(n - p)-  1/2 from (37) will be combined with the factor ((n - p ) ! ) -  of (32). Taking into 
account that the term p = n of (32), if it occurs, is empty in (37) we can rewrite (37) in the 
form 

with Si obtained from S1 by the replacements (n-p)k + (n- 1 - P ) ~  and min(n, m) -+ 
min(n - 1, m). By definition of R,  we have 

with the same factors bi and P .  . . as contained in (38). Exchanging the sums over (c, n - 1) 
and the sum over p with S o ,  in accordance with condition (iii), and using the identity 

we get R ,  = L 3  because also all number factors combine properly. 
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The most complicated part of the proof is the verification of the remaining 
R ,  = L ,  + L,. R ,  is defined as 

with the primes indicating omitted exponential factors. We use the identity 

and consider the contribution R; of the terms p = 1,. . . , p .  In these terms the inte- 
gration in (M), after the permitted exchange with So, acts only on one factor bi, and 
produces, in accordance with (7), a factor g;;(t). So we get 

Since i, is only a summation index of the sum over i ,  , . . . , i, we may rename it, say to j,. 
We also may rename i , ,  . . . , i p -  to j , ,  . . . , j,- , and i ,+ l , .  . . , i ,  to j,,. . . , j,- ,. This 
procedure yields for any value of p the same expression and so the sum over p, since 
carried out under the sum over i ,  , . . . , i, , actually means a factor p only, which can be 
combined with the factor ( p ! ) -  in (42). Since (42) so is empty for p = 0 we may replace 
the summation index p by p +  1 so that, with j , ,  . . . , j, again renamed to i , ,  . . . , i , ,  
we get 

R; = SOS, 1 gYl(t)B(bm;"-:l-p ; i p +  1 , , , ,, i m  - 1 ; t ) ; - p ( V p +  1 ,  . . ., ~ n ) *  (43) 

Note that the 'old' ip+  , has been replaced by j p  = i p  ('new') which by p + p + 1 assumes 
its old position. Note also that the upper limit of the sum over the new p is 
min(m, n + 1)- 1 = min(m- 1 ,  n) .  We have replaced it by min(m, n )  because the term 
p = m of (43) is empty, by condition (ii). If now once more the indices i , ,  . . . , i, are 
renamed so that 

(c,n + 1 )E1 

. .  
i , ,  . . * 3 i m - p  - 1, i m - p ,  i m  - p  + 1 9  . . ., i m  + i, , . * . I  i m -  p - 1 3 i m - p  + 1 , .  . ., tm, 1,- p 

the new expression for (43) becomes identical with L,, by the latter's definition. 
So finally we have to show L ,  = R; where R'; is the contribution of the terms 

p = p +  1,. . . , n +  1 Of (41) to R , .  For p = n+ 1 this contribution to R ,  is empty so the 
upper limit of the sum over p may be replaced by min(m, n). Further, the integration in 
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(40) now acts on one of the K variables of the symmetric ps, so the sum over p yields 
only a factor n + 1 - p. With the above definition of S, we thus get 

This is identical with L 2  and all statements of Part A are verified. 
Part B. The statements referring to condition (i) are proven in GE, those referring to 
condition (ii) in 9 4. In the cases (6) the condition (iii) is trivial because the critical sums 
contain only a finite number of terms. 

The composition law of 6 3 thus is proven in all details. With respect to validity, the 
theorem obviously can compete with results holding 'in any order of perturbation 
theory'. In view of this the proof is remarkably simple. 

We illustrate the potential and the working mechanism of the composition law by 
applying it to some simple problems in the interaction of an atom with incident photons. 
The quest for non-trivial simplicity in a natural way will lead us to problems of optical 
coherence. So we restrict the considerations to the case (6b) where the photon number is 
not necessarily bounded. The statespace of the coupled system A + R thus is a finite sum 
of Fock spaces 8" 

Optical coherence is usually discussed for the free radiation field R ,  ie on a single Fock 
space (mostly even only for a single mode, ie on a Hilbert space isomorphic to L2(R')). In 
our greater state space (45) we therefore in general can speak of the coherence of a state of 
R only under the condition that A is in some given state, eg some U&). If in a given situa- 
tion we know that A is in some definite state, usually its ground state uA(x), in that situa- 
tion we can speak of coherence in the usual way. 

6. The relative weight of the factorization and the photon number uncertainty aspects of 
coherence 

It is natural to assume that the initial states of A and R are 'prepared' independently 
of each other. This leads to an initial state of A + R with components of the form 

where C" and X , , ( K ~ , .  . . , K,,) are independent of each other and subject to the normaliza- 
tion conditions 

1 JC"12 = 1, 2 1 d 3 ~ ,  . . .I d 3 ~ n I ~ n ( ~ l , .  . . , K , ) I '  = 1. (47) 
"EQ n = O  

is the probability for A to be initially in the state U&) and the xn are the components 
of some given element I x )  of the Fock space which is chosen as initial state of R. But (46) 
does not yet lead to remarkable simplifications. We achieve them, and this is probably 
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the most important result that can be derived from the composition law, if and only if the 
X,(K~,  . . . , K,) for any n > 1 factor in the form 

The ‘photon number distribution coefficients’ c, satisfy 

m c lc,12 = 1 (49) 

and V(K) is a given, normalized one-particle wavefunction in the momentum space. 
lcJ2 then is the probability that the initial state of R contains precisely n photons. It is 
most remarkable that the additional condition 

with arbitrary a E C does not lead to further, physically relevant, simplifications. The 
radiation field R namely is initially in a ‘modified vacuum state’ (Friedrichs 1953) or 
in a ‘fully coherent state’ (Glauber 1963) with a mean of m : = laI2 photons if and only if 
(50) and (48) hold. It is the ‘factorization aspect’ (48) of coherence which produces the 
desired simplicity; this aspect implies the assumption that all photons in the past, at 
t < 0, somehow have received the same preparation (Friedrichs 1953, Ernst 1969) and 
thus initially, at t = 0, are all ‘in the same state’, described in the momentum space by the 
wavepacket q(k,  A) and in the position space by its Fourier transform @(x, A). If no inter- 
action occurs later, the photons remain forever ‘in the same state’ but this ‘state’ changes 
in time in compliance with causality : q(k,  I )  + q(k ,  A) x @(x, A) + @(x, A ;  t ) .  The 
position-space wavepacket @(x, I ; t) ,  the spatial Fourier transform of q ( k ,  A)e-iu(k)r,  
moves and spreads, and thus transfers ‘action’, with the velocity of light. The desired 
simplicity mirrors the absence of particle correlations between the incident photons, 
and this is contained in (48). Our composition law thus once more reveals the distin- 
guished role of the factoring many-photon amplitudes of form (48), as emphasized earlier 
(Ernst 1969). 

Technically this simplicity is obtained as follows. We can, and shall, identify q ( ~ )  
with one of the base vectors bi(K), say with b,(rc). The x:(il, . . . , i,) occurring in (16) then 
assume the form 

All sums over i , , . . . , i, in (16) now can be carried out (this is the point) and only the few 
/? functions P(b,;“; 1,. . . , 1 ; t)(ly(K,,. . . , K,) remain in (16). Since the index n and the 1’s 
are superfluous, and for later convenience, we introduce functions y ( ! ;  t) tf(K1,.  . . , K,) 
by putting 

It  is easily verified that the corresponding equations (17) are solved by (52) if the y’s 
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satisfy the equations 

+ 1 g X t )  exp[ - it(Ec - E")] r(: - ; t)Cy(~~ , . . . , K J  
ceQ 

under the initial conditions 

Y (", o ) t ( K 1  9 .  . . 9 K v )  = 6 v 0 .  

The composition law (16) then assumes the simple form 

a( t ) i (K l , .  . . , K , )  = exp[ -it(o(K1)+ . . . + o ( ~ , ) + E " ) ] a ' ( t ) ~ ( ~ ~ ,  . . . , K , ) ,  

C L ' ( t ) i ( K l ,  . . . , I C , ) :  

( 5  3) 

(54) 

( 5 5 )  

K I ..... K n  
x P cp(rl1)X . . .  x c p ( ~ , ) x y ( ~ - , ; t ) i - p ( ~ p + l r . . .  , r l n ) .  (56) 

v 1 1  ... . P I n  

The exponential factor in (52) has been introduced to obtain the exponential factor in 
(55). a'(t)i then is related to the Merller operator and thus, in general, possesses a limit 
for t + a. For example, the probability Pi(?) to find, at time t ,  A in the state u,(x) and 
R in a state of n 2 0 photons, and each of them in that state which in the absence of 
interaction evolves from the initial state 4(x, A), is given by 

pi(?) = 1 f d3K1 . . . f d3K,cp*(Kl) X . . . X ( P * ( K , ) a ' ( t ) i ( K 1 ,  

Introducing the projections 
c c 

we obtain by straightforward calculations 

. . .  

The quantities (57H59) in general have a limit for t -+ cc. 
A still more simple form of the composition law can be obtained only at the price of 

triviality. If c, is specialized to (50) the factors (m!)lI2 in (56) and (59) cancel, but this is 
physically not relevant. It also would have occurred in (16) if x n  had been written in the 
form xn  = c,xi with c, given by (50) and with any normalized, but not factoring xi. 
Though in this case the 'photon number uncertainty coefficients' c, are identical with 
those of a fully coherent state, the correlations in x i  would lead to additional correlations 
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in the solution of the interaction problem which require the full apparatus of (16), (17). 
To emphasize once more the greater physical weight of the factorization aspect (48) of 
coherence we note that the c, do not enter the physically decisive equations of motion 
(17) or (53). Like the Cb they occur in (16) or (56) only in the role of rather trivial coeffi- 
cients of a quantum-mechanical linear composition of independent processes, whereas 
correlations in the incident beam, described by a non-factoring x , ,  directly enter the 
equations (1 7). 

We have argued here mainly on the base of Friedrichs' (1953) discussion of modified 
vacuum states ofthe Fock space. For the reader more accustomed to the usual concept of 
coherence in one 'mode' (eg Glauber 1963, Paul 1963) the above remarks may appear 
strange. We therefore note that the state space of one mode is a Hilbert space isomorphic 
to an extremely small subspace of the Fock space, namely the set of states of form 
X ,  = c , ~ ( K ~ )  x . . . x $(IC,) for all n, where the normalized 4 ( ~ )  is prescribed and fixed 
once and forever, and only the c, can vary in time. Free motion and the related spread 
of action through the position space is not possible in such a theory. This requires a 
change X(K) + X ( K )  e-""(') whereas a given 'mode' changes only by a factor e-iE' with 
constant E .  The decisive factorization aspect (48) of coherence in the Fock space thus is 
'prescribed' by the one-mode assumption, and only the photon number uncertainty 
aspect is subject to analysis (eg Paul 1963, Brunner et al 1964). But to meet the require- 
ments of causality at least with respect to the spread of action by photons we must 
consider a theory on a complete set of modes, or, as here and in GE, on a 'continuum of 
modes'. So as potential solutions we must admit all states of %(I) ,  also those with 
complicated photon correlations, ie with photons 'distributed over many modes'. Our 
composition law owes its complexity to the fact that, unfortunately, the atom does use 
this freedom to emit 'into all modes' ; we noted in 6 4 and in a special case will see below 
that incident photons in essence do not actively hinder it from doing so. 

7. An illustration of causality in Weisskopf-Wiper theories 

To illustrate the above a little better we first must look at the function g?,'(t) which, in 
accordance with (7) and (4), can be written in the form 

) d3x e'"'uf(x)au,(x) . (60) 1 2 e 
p(k, A)E(k, A) 

Let us assume that the incident wavepacket is similar to a Gaussian packet which moves 
in some direction and contains 'optical' photons of linewidth small compared with 
$1, where & is the mean photon momentum. Then cp(k,A) is 'concentrated' about & 
and l / ( ~ ( k ) ) ' / ~  can be considered constant in the region of the k space where p(k, A)  is 
different from zero. So it can be taken out of the integral (60). In the remaining integral 
we use the fact that the scalar product of two momentum-space wavefunctions equals the 
x-space scalar product of their Fourier transforms. So we get 
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The second factor of the integrand is different from zero only in a region about the 
position X = 0 of the atom of dimensions of the Bohr radius a, which, under the above 
assumptions, satisfies u0 << lkl-l. The first factor then for any t is nearly constant in that 
region and so it can be taken out of the x integral : 

The remaining integral exists and defines a constant current Ja9' which depends only on 
atomic properties. The vector-valued function &t, 0) is defined as the value of the first 
factor of (61) at the position ofthe atom at time t. It is composed of the amplitudes of the 
incident wavepackets $(x, L) at  the position of the atom at time t .  Therefore, g y c ( t )  can 
be non-zero only as long as the incident wavepacket overlaps the atom. In particular, it 
vanishes for all t if the incident photo s do not 'hit' the atom at all. 

A glance at (53) and (54) shows that the y ( ; , ;  t )  . . . for CJ 2 1 remain zero as long as 
A has not been reached by the incident wavepacket and that A radiates independently of 
the incident photons as soon as the overlapping has been ended. Within the limits of 
this example the composition law thus has disclosed that and how WW theories comply 
with the requirements of causality. 

8. The single atom as square law detector and destroyer of coherence 

Under the above realistic assumptions the overlap function gIsC( t )  will be very small at 
any time, partly because of the factor e,  but mainly due to the other conditions. If A ,  in 
addition, at t = 0 is in some excited state uB(x), ie Cb = 86,B, the y(;. . . .) . . . for CJ 2 1 
will be very small in comparison with the spontaneous amplitudes ?(E; t);(ic1,. . . , KJ 
which by definition are independent of the incident photons. Therefore, for a not too 
large number of incident photons the terms p = m of (56) and (59) will be dominant. 
Neglect of the other terms leads to 

Equation (63) emphasizes an other aspect of the composition law. In accordance 
with the Bose principle it 'composes' the state of A + R even if there is no dynamical 
interaction between A and the incident photons, as here. This is so because incident 
photons and spontaneously emitted photons are quanta of the same field R and thus 
subject to the Bose principle. But even this 'composition' is not trivial; it still is the base 
of the concept of 'stimulated emission'. 

Assume that u d x )  (uA(x)) is the upper (lower) state of a 'two-level atom'. If in that 
case primarily one photon is emitted 'spontaneously', at t ---t CO the amplitude y(E ; t);(ic) 
and its projection r ( ! ; t ) t  on the state of the incident photons will be dominant. The 
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sums in (63) and (64) then reduce to the terms m = n- 1 and we get 

If the initial state contains precisely N photons, c, = anN, (66) becomes the Fock space 
counterpart, P;+,(CO) = ( N +  l)lr(:; c0)fl2 of the historic factor N +  1 of stimulated 
emission (Dirac 1927b) of first-order perturbation theory. Since 9’(: ; t)f(K) is not 
restricted to perturbation theory we actually have obtained a generalization of this 
theory. We want to emphasize here only that the ‘stimulated emission factor’ n +  1 in 
(66) occurs independently of the c,. Within the limits of this derivation (actually within 
a much wider frame) the atom does not react on the photon number uncertainty aspect of 
coherence ; it has no ‘sense’ for it, does not feel it at all, and reacts to each ‘n-photon 
component of the initial state’ independently of the others. In other words, the atom 
behaves like a photon counter (square law detector), but not as a ‘test body’ for the 
measurement of electromagnetic field strengths. 

It has been shown (Paul 1963) that an initially excited atom which can emit only one 
photon and is coupled to one mode so that it must emit its photon into that mode, in 
essence changes a fully coherent state of m photons to a fully coherent state of m+ 1 
photons in that mode. The situation is quite different in our case. We could speak of a 
fully coherent state of R at t - CO, when the atom is in its ground state, if expressions (63) 
and (65) could be written in the form (48) with a new p ( ~ )  and a c, of form (50) with a 
new a. But this is not possible, not even in a crude approximation. The point is that 
within very wide limits of validity, the approximations (63) and even (65) are very good, 
and that the y’s in (63) and (65) are independent of the incident photons. l-(:; m)f, 
which in a self-consistent one-mode theory necessarily is of order 1 (cf Paul 1963), in our 
case is very small, but not zero under non-trivial circumstances. The full coherence of the 
initial state therefore is always destroyed to a finite, appreciable degree. 

We emphasize that the above statements refer to a single atom. Many atoms, simul- 
taneously coupled to ‘all modes of R’, can behave quite differently. More on these 
problems and other applications of the composition law will be given elsewhere. 

Note added in proof. Our remarks on the limits t + 00 of the Merller operator and of 
(56), (59) are too optimistic. In fact, these limits exist in WW theories only in exceptional 
cases, eg if the atom is considered as a two level atom with sufficiently large energy dif- 
ference E B -  EA and I = ( (B,O) , (A,  l)}. Even a simple spin degeneracy of the levels 
makes these limits non-existent. This of course does not affect the existence of a unitary 
time evolution to any finite t .  It also does not affect the composition law. 
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